Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Teacher-Student Learning for Unsupervised Domain Adaptation

The teacher-student (T/S) learning has been shown effective in unsupervised domain adaptation [1]. It is a form of transfer learning, not in terms of the transfer of recognition decisions, but the knowledge of posteriori probabilities in the source domain as evaluated by the teacher model. It learns to handle the speaker and environment variability inherent in and restricted to the speech signa...

متن کامل

Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Incremental Dictionary Learning for Unsupervised Domain Adaptation

Domain adaptation (DA) methods attempt to solve the domain mismatch problem between source and target data. In this paper, we propose an incremental dictionary learning method where some target data called supportive samples are selected to assist adaptation. The idea is partially inspired by the bootstrapping-based methods [1, 3], which choose from the target domain some samples and add them i...

متن کامل

Learning Transferrable Representations for Unsupervised Domain Adaptation

Supervised learning with large scale labelled datasets and deep layered models has caused a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers from generalization issues under the presence of a domain shift between the training and the test data distribution. Since unsupervised domain adaptation algorithms directly address this domain shift problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2956103